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Abstract. A relativistic effect involving the local number density of particles on a rotating 
contour is predicted from the requirement that the total number of particles is constant. 
The effect is conjugate to that resulting from the invariance of the action or phase integral 
and is observable through the phenomenon of unipolar induction. 

1. Introduction 

In some previous publications (Forder 1984a, b), it was demonstrated how various 
types of gyroscope could be analysed by the method of adiabatic invariance. By 
requiring that the action integral I = f p dq for each particle on the gyro contour should 
be a constant, the behaviour of the particles under the influence of inertial rotations 
and other general relativistic fields could be determined. No account was taken, 
however, of the invariance of the number of particles confined to the contour, a 
necessary requirement, even for massless particles, if the total action of the system is 
to be constant. 

The purpose of this paper is to show that such an invariance leads to a further 
relativistic effect in gyroscopes involving the number density of particles. The effect 
is, therefore, conjugate to the more familiar gyroscopic effects which concern the 
momentum (i.e. action density) of the particles. When considering particles which are 
confined to a ring in the form of a macroscopic quantum state, the effect should 
be observable through the amplitude of the wavefunction rather than through its phase. 
Classically, however, the effect is responsible for the phenomenon of unipolar induction 
and is of relevance to the long-standing controversy regarding the origin of the 
electromotive force produced by rotating magnetic sources. 

2. The number function 

We begin by considering a spatially closed contour (figure 1) on which are confined 
a number of otherwise free identical particles whose motion is described by Hamilton’s 
function S ( x p ) .  Values of S at neighbouring points in spacetime x” = (xo, x i ) ?  are 
therefore determined by the four-momentum p p  of each particle: 

p,, = -aslax”. 

t Greek indices will be used to denote spacetime coordinates and run from 0-3. Latin indices denote spatial 
coordinates only and run from 1-3. 
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dx 

Figure 1. The model gyroscope. Particles circulate on the contour in an anticlockwise 
direction at a rate j and with line density n. In changing his spacetime coordinates by 
dx”, an observer on the contour passes (i.e. counts) a total number of particles d N =  
(dN/dx+)dx’=n d l - j d r  

In the absence of general relativistic effects, we may consider such derivatives in terms 
of a single coordinate x (representing distance measured along the contour from some 
origin) and the usual time coordinate t = xo/c and write 

d S = p d x - E  d t  (2) 

where E = -aS/at is the particle energy and p = aS/ax is its momentum. 
Whilst the function S describes the motion of a given particle, information concern- 

ing the distribution of many such particles in spacetime may be obtained from an 
analogous scalar function N(x”) ,  the number function. As with S, only the differences 
in N have physical significance, since the absolute number of particles counted by an 
observer clearly depends on when and where he begins. We define, therefore, a density 
of particles, D,, analogous to the action density of equation ( l ) ,  where 

D, = -aN/ax,. (3) 

Again, in the absence of relativistic effects, we may write the difference d N  between 
neighbouring points in spacetime as 

d N  = n dx  - j  dt  (4) 

where j = -aN/at is the rate at which particles pass a stationary observer and n = aN/ax  
is their local density on the contour. In practice, d N  then represents the number of 
particles counted by an observer who moves a distance dx  in a time d t  and who counts 
particles that pass him in a clockwise direction as positive and those that pass 
anticlockwise as negative. 

If the particles on the contour constitute a macroscopic quantum state the amplitude 
and phase functions of the one-dimensional wavefunction 4 = CCl0 exp(i4) are given in 
terms of n and S as 
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where E = ho and p = f k  Points of constant phase must therefore propagate with the 
velocity 

v , = w / k = E / p  (7)  

v = j / n .  (8) 

whilst from equation (4), points of constant number propagate with the particle velocity 

3. Measurements on a rotating contour 

Since the quantities defined by equations (1) and (3) are derivatives with respect to 
coordinates, they are not, in general, the results of measurements made by an observer 
on the contour using clocks and measuring rods. As discussed elsewhere (Forder 
1984a), in order to determine the results of such measurements it is necessary to 
consider the changes in S (or 4 )  and N in terms of the corresponding intervals of 
proper length d l  and proper time dT. Such intervals will be determined by the nature 
of the local spacetime metric gpLy and hence the presence of any gravitational fields. 
In this paper, however, we restrict ourselves to considering the effects of a uniform 
inertial rotation rate where the intervals are related to the coordinate differences 
according to 

(dl), = dx'  ( 9 )  

dT = dxO/c + de  = dxO/c - (Cl  A r )  .d l /c2 (10) 

where r is the position vector of the observer and we assume Or<< c. 

spacetime points in the form: 
Following previous arguments, we consider the difference d S  between neighbouring 

(sum over p =0,1 ,2 ,3)  (11) 

and then, by separating spatial and temporal parts of the expression, we obtain, using 
equations (9) and (lo), 

d S  = (as lax@) dx@ = p dl  - E dT 

(aslax ' )  dx' z p  dl  - E d e  (sum over i = 1,2,3) (12) 

where p and E are the proper (i.e. measured) values of momentum and energy. In 
the same way, we may write for the number function: 

( aN/ax ' )dx '=n  d l - jdB (sum over i = 1,2,3) (13) 

where n and j are the proper values of particle density and particle rate, respectively. 
Integration of equations (12) and (13) around the contour then determines the 

action Io of the motion and the total number of particles involved, No. For simplicity 
we consider situations where the motion and distribution of the particles is uniform 
and write 

Io= (aslax ' )  d x ' = p L + E A T  (sum over i = 1,2,3) (14) 

(15) (sum over i = 1,2,3) 

f 
(aN/ax ' )  d x ' =  nL+jAT 
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where L = f d l  is the length of the contour and A T = - f d B  is the Sagnac clock- 
synchronisation discrepancy, given in terms of the contour area S and rotation rate 
fi as (Landau and Lifshitz 1971) 

AT=2SL*S/c2 .  i 16) 

Equation (14) therefore relates the measured values of particle energy and momen- 
tum (E  and p )  to the total action Io whilst equation (15) is the analogous expression 
relating measured values of particle rate and density ( j  and n )  to the total number of 
particles No. Only in an inertial frame where AT = 0 can we write Io = pL and No = nL. 

4. The invariance of action and number 

The invariance of the action (or phase) integral Io (equation (14)) of particles confined 
to a rotating contour, and its consequences in determining the behaviour of gyroscopes, 
has been fully considered elsewhere (Forder 1984a, b). Although the invariance of the 
total number of particles No on the contour is not difficult to understand, particularly 
when the particles involved possess rest mass, its consequences are no less important. 
By equating the values of Io and No which apply when the contour is at rest (AT = 0) 
to those when it is rotating, it is possible to derive expressions for the local changes 
in particle motion which an observer on the contour will detect. Thus, if, when initially 
at rest in an inertial frame, Io = ( p  - Ap) L and No = ( n  - An) L, the changes in momen- 
tum Ap and particle density A n  brought about by applying a given angular velocity 
to the contour are, using equations (14) and (15), 

Ap= - E A T / L = - ~ E ~ ~ * S S / L C ~  (17) 

A n  = - jAT/L=  -2jf l -S/Lc2.  (18) 

Equation (17) has, of course, been derived elsewhere whilst equation (18) predicts the 
analogous relativistic effect involving the particle density on the contour. 

A circular contour of radius R = 2S/ L rotated about an axis through its centre and 
normal to its plane is of particular interest since the changes are then simply 

Ap= -ClER/c2 (19) 

An = -CljR/c2. (20) 

It is perhaps not unnecessary to remark that, in this case, the pairs of local variables 
(p, E)  and (n, j )  as measured in the rotating frame can be Lorentz-transformed back 
to the inertial frame to obtain their original values: 

(21) 

where Y = ( 1  - - f l * R * / ~ ~ ) - ” ~ .  When n R / c  is small, y is close to unity and equations 
(19) and (20) are obtained directly. 

p - Ap = y(  p +flER/c2)  

n - A n = y ( n + f l j R / c 2 )  (22) 

5. Excess charge and potential of rotating circuits 

Equation (18) may be applied to a variety of physical systems but in the remainder 
of this paper we shall confine ourselves to the case of a perfectly conducting loop of 
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wire carrying a current I = qj (with q = e, the electronic charge). Although such a 
contour is electrically neutral in the sense that there are always equal numbers of 
electrons and lattice charges, equation ( 1 8 )  predicts that, when the contour is acceler- 
ated to an angular velocity a, a co-rotating observer will see an excess charge per unit 
length: 

qAn = - I A T / L =  - 2 1 a - S / L c 2  (23 )  

qAn = - f l R I / c 2 .  (24 )  

or, in the case of a circular contour of radius R, equation (20 ) ,  

This excess charge is, of course, only a local difference A n  in the densities of 
electrons and lattice charges and is purely a result of the difficulties with clock 
synchronisation in the non-inertial frame. It is, however, very real to the observer, not 
least of all because Gauss’ law ensures that it has an associated electric field. For a 
circular loop constructed from wire of radius a << R, this field is directed radially 
outward from the surface of the conductor and is of magnitude 

E = q A n / 2 m o a  = -flRIpO/2rra = -QRB 

where B = p 0 I / 2 r a  i s  the magnetic field at the surface and we have written po = 

The presence of such an electric field will also change the potential of the contour 
as seen in the rotating frame and, in terms of the capacitance per unit length of the 
loop E / ,  this new potential may be written as 

( E o C 2 ) - l .  

V =  qAn/E, = - I A T / C o =  - f lRIpI  (26 )  

where CO = LE/  is the total capacitance and pr = ( E ~ C ’ ) - ’  is the inductance per unit 
length. Note that since p J  is the magnitude of the effective vector potential A at each 
point on the contour in the rotating frame, the variables (pJ,  V )  can be Lorentz 
transformed back to the inertial frame (cf equations ( 2 1 )  and ( 2 2 ) )  to give the original 
(zero) potential: 

In certain respects the excess charge produced by the inertial rotation is similar to 
the apparent volume charge density present within a medium of non-uniform electric 
polarisation. Indeed, as Heer (1964) has shown, these inertial effects can be analysed 
directly in terms of an anisotropic constitutive relation for free space: 

D = F ~ E  - ~ ~ ( f l  A r )  A B  

corresponding to an apparent volume charge density (cf Schiff 1939, Trocheris 1949): 

Ap = V ( EOE - D )  
= 2Eoa-B- & o ( a  A r )  .(V A B )  

= 2c0f l  B - fl r A J / c 2  (29 )  

where J =  V A B / p o  is the current density. Integration of this expression over the 
highly localised volume of the current-carrying contour then yields equation (23 ) .  
Note, however, that, according to this analysis, observers in the rotating frame who 
are not actually on the contour are also aware of a rotationally induced charge density, 
but one which is proportional to B rather than J, When there are no ‘real’ charges, 
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as with the rotating contour, the electric displacement D must vanish, producing a 
rotational-dependent electric field (cf equation (25)): 

E = ( S L  A r )  A B. (30) 

6. Unipolar induction and magnetic inertia 

Equations (25) and (30) are of some interest since, although the magnetic field B which 
appears in the expressions is measured in the rotating frame, the force qE experienced 
by a rotating observer equipped with a test charge q is the same as if he were moving 
relative to an identical magnetic field with velocity U = SL A r. If, therefore, we wish to 
consider this effect using the convenient fiction of magnetic lines of force, it is necessary 
to endow such lines with an intrinsic inertia (derived from their finite self energy) 
which, by preventing them from acquiring the rotational motion of their source (the 
contour), keeps them fixed in the inertial frame. 

Whilst this view of the system may be criticised as being picturesque rather than 
physically meaningful, the question as to whether magnetic fields do or do not ‘rotate’ 
with their source has, in fact, been the subject of heated debate, both in the past and 
also more recently (e.g. Djuric 1975) since its answer is of some relevance to identifying 
the source of electromotive force produced by unipolar induction (e.g. Rosser 1968). 
This phenomenon is most readily considered in terms of Faraday’s homopolar gen- 
erator, consisting of a suitable magnetic source, such as the conducting permanently 
magnetised disc of figure 2, rotating between stationary sliding contacts on its axis 0 
and perimeter A. A meter connected between these contacts, together with the return 
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X 

X 

X X 

X 
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Figure 2. Faraday’s homopolar generator. A magnetic source such as a permanently 
magnetised disc or a circular current loop is rotated between stationary contacts at 0 and 
A. The EMF generated is 8 = -R@,,/Zn = R ‘ l ’  where a,, is the flux enclosed by the 
perimeter. Arrow heads ( * )  and tails ( X )  denote flux lines. 
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path through the disc (shown as a broken line), form a complete circuit, through which 
a current I’ flows, of magnitude proportional to the rotation rate. The question then 
is: is the electromotive force that drives this current produced by rotating lines of force 
sweeping through fixed parts of the circuit or in the magnetised disc itself as it rotates 
in its own, stationary, field? Either hypothesis can be used to predict the correct 
magnitude and sense of the E M F  as 

8 = -na3/25r  (31) 

where m0 is the total magnetic flux linking the area of the disc. Curiously, however, 
there is scant experimental evidence to distinguish between the opposing views, apart 
from the few results of Pegram (1917). Aithough surrounded by some controversy, 
these results appear to support the view that the field does not rotate. 

Whilst we do not attempt to provide an explanation of unipolar induction in the 
general case, we consider a modified form of homopolar generator, in which the 
permanent magnet of figure 2 is replaced by a simple metallic disc whose perfectly 
conducting perimeter carries a circulating current I .  In the rotating frame, the perimeter 
of the disc appears to possess an excess charge (equation ( 2 4 ) )  which, under the action 
of the potential difference of equation (26 ) ,  will tend to flow towards 0. In the inertial 
frame, however, the perimeter is initially neutral and any charge that flows within the 
rotating frame must leave the disc with a deficiency as seen by a fixed observer. Hence, 
the charge that reaches 0 immediately returns to the perimeter through the external 
circuit and the continuous current I‘ is set up. Such behaviour, of course, originates 
from the fundamental inability of stationary and rotating observers to agree on the 
neutrality, or otherwise, of the perimeter of the disc. 

In order to neglect the magnetic interaction between I’  and the perimeter current 
I, we must assume a sufficiently large circuit resistance R’ to ensure that I ’ / I  is small. 
With this restriction, however, it follows that the source of the E M F  is simply the 
rotationally induced potential of the perimeter in the rotating frame, equation (26 ) .  
For a contour of length L=2.lrR, this E M F  is of the same magnitude as given by 
equation (3  1 ), namely 

where Q0 = Lo1 is the enclosed magnetic flux and Lo = p,L is the total inductance of 
the contour. The resistance R’ should be large enough to satisfy the condition 

7. Conclusions 

By considering the invariance of the total number of particles No confined to a rotating 
contour, the change in local number density An in a gyroscope of length L and area 
S can be obtained in the form: 

ANo=O= L d n + j A T  (34) 

where j is the particle rate and A T = 2 i l . S / c 2  is the Sagniic synchronisation dis- 
crepancy. 
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When considering the charged particles in a conducting ring carrying a circulating 
current I, the change in particle density results in an increased potential in the rotating 
frame: 

where CO is the capacitance of the ring and Lo is its inductance. The result can be 
applied to an idealised form of Faraday's homopolar generator and shows that the 
EMF within such a system originates in the rotating frame. 

Acknowledgments 

This work was supported by an Advanced Fellowship from the Science and Engineering 
Research Council 

I wish to thank my colleagues within the Physics Laboratory, University of Kent 
at Canterbury for many helpful discussions during the course of this work. I am 
particularly indebted to Professor J B Brown for drawing my attention to the literature 
on unipolar induction. 

References 

Djuric J 1975 J. Appl. Phys. 46 679-88 
Forder P W 1984a J. Phys. A: Math. Gen. 17 1343-55 
- 1984b J. Phys. D: Appl. Phys. 17 665-72 
Heer C V 1964 Phys. Reo. 134 799-804 
Landau L D and Lifshitz E M 1971 ?'he Classical Theory of Fields (Oxford: Pergamon) 
Pegram G B 1917 Phys. Reo. 10 591-600 
Rosser W G V 1968 Classical Electromagnetism Via Relativity (London: Butterworths) 
Schiff L I 1939 Proc. Nat. Acad. Sci. 25 391-5 
Trocheris M G 1949 Phil. Mag. 40 1143-54 


